Plasma-membrane Ca(2+) pumps: structural diversity as the basis for functional versatility.

نویسندگان

  • E E Strehler
  • A G Filoteo
  • J T Penniston
  • A J Caride
چکیده

Plasma-membrane calcium pumps [PMCAs (plasma-membrane Ca(2+)-ATPases)] expel Ca(2+) from eukaryotic cells to maintain overall Ca(2+) homoeostasis and to provide local control of intracellular Ca(2+) signalling. Recent work indicates functional versatility among PMCA isoforms, with specific pumps being essential for cochlear hair cell function, sperm motility, feedback signalling in the heart and pre- and post-synaptic Ca(2+) regulation in neurons. The functional versatility of PMCAs is due to differences in their regulation by CaM (calmodulin), kinases and other signalling proteins, as well as to their differential targeting and retention in defined plasma membrane domains. The basis for this is the structural diversity of PMCAs. In mammals, four genes encode PMCA isoforms 1-4, and each of these has multiple variants generated by alternative RNA splicing. The alternatively spliced regions are intimately involved in the regulatory interactions and differential membrane localization of the pumps. The alternatively spliced C-terminal tail acts as an autoinhibitory domain by interacting with the catalytic core of the pump. The degree of inhibition and the kinetics of interaction with the major activator CaM differ between PMCA variants. This translates into functional differences in how PMCAs handle Ca(2+) signals of different magnitude and frequency. Accumulating evidence thus demonstrates how structural diversity provides functional versatility in the PMCAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential membrane targeting of the SERCA and PMCA calcium pumps: experiments with recombinant chimeras.

Structural features underlying retention of the SERCA pump in intracellular compartments and the sorting of the PMCA pump to the plasma membrane are not known. The biochemical properties of the two pumps suggest that their differential localization may respond to specific functional demands. The two pumps may control Ca(2+) gradients of different magnitude and dynamic properties. For instance, ...

متن کامل

Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps.

Calcium pumps of the plasma membrane (also known as plasma membrane Ca(2+)-ATPases or PMCAs) are responsible for the expulsion of Ca(2+) from the cytosol of all eukaryotic cells. Together with Na(+)/Ca(2+) exchangers, they are the major plasma membrane transport system responsible for the long-term regulation of the resting intracellular Ca(2+) concentration. Like the Ca(2+) pumps of the sarco/...

متن کامل

Defective Calcium Pumps in Neurons in the Aging Brain and in Parkinson’s Disease

The plasma membrane Ca-ATPase (PMCA) pumps play an important role in the maintenance of precise levels of intracellular Ca, quintessential for the optimal functioning and long term survival of neurons. In this paper, we review evidence showing alterations in the PMCAs in aging brain. Additionally, we provide evidence showing defects in these transporters in Parkinson’s disease (PD). PMCA activi...

متن کامل

Plasma-membrane calcium pumps and hereditary deafness.

In mammals, four different genes encode four PMCA (plasma-membrane Ca(2+)-ATPase) isoforms. PMCA1 and 4 are expressed ubiquitously, and PMCA2 and 3 are expressed predominantly in the central nervous system. More than 30 variants are generated by mechanisms of alternative splicing. The physiological meaning of the existence of so many isoforms is not clear, but evidently it must be related to th...

متن کامل

Structure and mechanism of Na,K-ATPase: functional sites and their interactions.

The cell membrane Na,K-ATPase is a member of the P-type family of active cation transport proteins. Recently the molecular structure of the related sarcoplasmic reticulum Ca-ATPase in an E1 conformation has been determined at 2.6 A resolution. Furthermore, theoretical models of the Ca-ATPase in E2 conformations are available. As a result of these developments, these structural data have allowed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 35 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2007